122 research outputs found

    Schwarzschild and Synge once again

    Full text link
    We complete the historical overview about the geometry of a Schwarzschild black hole at its horizon by emphasizing the contribution made by J. L. Synge in 1950 to its clarification.Comment: 2 pages, LaTeX, submitted for publication; 2 references, one Note, and an Acknowledgement are adde

    Editorial note to "The beginning of the world from the point of view of quantum theory"

    Full text link
    This is an editorial note to accompany reprinting as a Golden Oldie in the Journal of General Relativity and Gravitation of the famous note by Georges Lemaitre on the quantum birth of the universe, published in Nature in 1931. We explain why this short (457 words) article can be considered to be the true "Charter" of the modern Big Bang theory.Comment: This is an editorial comment to accompany reprinting of a classical paper in the Journal of General Relativity and Gravitation. 16 pages, 2 figure

    Reissner-Nordstrom and charged gas spheres

    Full text link
    The main point of this paper is a suggestion about the proper treatment of the photon gas in a theory of stellar structure and other plasmas. This problem arises in the study of polytropic gas spheres, where we have already introduced some innovations. The main idea, already advanced in the contextof neutral, homogeneous, polytropic stellar models, is to base the theory firmly on a variational principle. Another essential novelty is to let mass distribution extend to infinity, the boundary between bulk and atmosphere being defined by an abrupt change in the polytropic index, triggered by the density. The logical next step in this program is to include the effect of radiation, which is a very significant complication since a full treatment would have to include an account of ionization, thus fieldsrepresenting electrons, ions, photons, gravitons and neutral atoms as well. In way of preparation, we consider models that are charged but homogeneous, involving only gravity, electromagnetism and a single scalar field that represents both the mass and the electric charge; in short, anon-neutral plasma. While this work only represents a stage in the development of a theory of stars, without direct application to physical systems, it does shed some light on the meaning of the Reissner-Nordstrom solution of the modified Einstein-Maxwell equations., with an application to a simple system.Comment: 19 pages, plain te

    A tentative derivation of the main cosmological parameters

    Full text link
    Based on the assumption that some apparent properties of the observable universe are accurate at a reasonable level of approximation, a tentative is made to independently derive the values of the baryon density parameter, the Hubble constant, the cosmic microwave background temperature and the helium mass fraction. The obtained values are in excellent agreement with those given by the most recent observational data.Comment: 13 pages. Accepted for publication in Astrophysics & Space Scienc

    On Dual Formulation of Gravity

    Full text link
    In this paper we consider a possibility to construct dual formulation of gravity where the main dynamical field is the Lorentz connection \omega_\mu^{ab} and not that of tetrad e_\mu^a or metric g_\mu\nu. Our approach is based on the usual dualization procedure which uses first order parent Lagrangians but in (Anti) de Sitter space and not in the flat Minkowski one. It turns out that in d=3 dimensions such dual formulation is related with the so called exotic parity-violating interactions for massless spin-2 particles.Comment: 7 pages, plain LaTe

    Mass loss by a scalar charge in an expanding universe

    Get PDF
    We study the phenomenon of mass loss by a scalar charge -- a point particle that acts a source for a noninteracting scalar field -- in an expanding universe. The charge is placed on comoving world lines of two cosmological spacetimes: a de Sitter universe, and a spatially-flat, matter-dominated universe. In both cases, we find that the particle's rest mass is not a constant, but that it changes in response to the emission of monopole scalar radiation by the particle. In de Sitter spacetime, the particle radiates all of its mass within a finite proper time. In the matter-dominated cosmology, this happens only if the charge of the particle is sufficiently large; for smaller charges the particle first loses some of its mass, but then regains it all eventually.Comment: 11 pages, RevTeX4, Accepted for Phys. Rev.

    The restricted two-body problem in constant curvature spaces

    Full text link
    We perform the bifurcation analysis of the Kepler problem on S3S^3 and L3L^3. An analogue of the Delaunay variables is introduced. We investigate the motion of a point mass in the field of the Newtonian center moving along a geodesic on S2S^2 and L2L^2 (the restricted two-body problem). When the curvature is small, the pericenter shift is computed using the perturbation theory. We also present the results of the numerical analysis based on the analogy with the motion of rigid body.Comment: 29 pages, 7 figure

    Ideal Stars and General Relativity

    Get PDF
    We study a system of differential equations that governs the distribution of matter in the theory of General Relativity. The new element in this paper is the use of a dynamical action principle that includes all the degrees of freedom, matter as well as metric. The matter lagrangian defines a relativistic version of non-viscous, isentropic hydrodynamics. The matter fields are a scalar density and a velocity potential; the conventional, four-vector velocity field is replaced by the gradient of the potential and its scale is fixed by one of the eulerian equations of motion, an innovation that significantly affects the imposition of boundary conditions. If the density is integrable at infinity, then the metric approaches the Schwarzschild metric at large distances. There are stars without boundary and with finite total mass; the metric shows rapid variation in the neighbourhood of the Schwarzschild radius and there is a very small core where a singularity indicates that the gas laws break down. For stars with boundary there emerges a new, critical relation between the radius and the gravitational mass, a consequence of the stronger boundary conditions. Tentative applications are suggested, to certain Red Giants, and to neutron stars, but the investigation reported here was limited to polytropic equations of state. Comparison with the results of Oppenheimer and Volkoff on neutron cores shows a close agreement of numerical results. However, in the model the boundary of the star is fixed uniquely by the required matching of the interior metric to the external Schwarzschild metric, which is not the case in the traditional approach.Comment: 26 pages, 7 figure

    Regularizing cosmological singularities by varying physical constants

    Full text link
    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ\Lambda-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.Comment: 9 pages, 6 figures, Revtex4-1, an improved version to appear in JCA

    Numerical simulations of the kappa-mechanism with convection

    Full text link
    A strong coupling between convection and pulsations is known to play a major role in the disappearance of unstable modes close to the red edge of the classical Cepheid instability strip. As mean-field models of time-dependent convection rely on weakly-constrained parameters, we tackle this problem by the means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with convection. Using a linear stability analysis, we first determine the physical conditions favourable to the kappa-mechanism to occur inside a purely-radiative layer. Both the instability strips and the nonlinear saturation of unstable modes are then confirmed by the corresponding DNS. We next present the new simulations with convection, where a convective zone and the driving region overlap. The coupling between the convective motions and acoustic modes is then addressed by using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and Space Science, HELAS workshop (Rome june 2009
    corecore